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Equivalences between stochastic systems 

Make Henkelt, Enzo Orlandini and Gunter M Schiitz 
Theoretical Physics, Department of Physics, University of Oxford, I Keble~ Road, Oxford 
OX1 3NP. UK 

Received 19 April 1995 

Abstract. Time-dependent correlation functions of (unstable) particles undergoing biased or 
unbiased diffusion, coagulation and annihilation are studied. This is achieved by similarity 
transformations between different stochastic models and between stochastic and soluble non- 
sroduvtic models. For s p e d  wses we obtain exacf results which are in good agreement with 
expenments on one-dimensional annihilation-magulation processes. 

The physics of interacting particles out of thermodynamic equilibrium has been a subject 
of much recent interest. While in larger spatial dimensions, conventional rate equation 
approaches are sufficient, systems constrained to be effectively one-dimensional display 
novel and interesting fluctuation effects. For example, for particles A diffusing on a lattice 
and undergoing a binary reaction process A + A + products one expects, for large times t ,  
an algebraic fall-off of the mean particle concentration 

F(f) - r-J . (1) 
In I D  systems,. one finds y = f as~opposed to y = I ,  obtained from a (mean-field) 
rate equation. The exponent y has also been~ measured experimentally in effectively one- 
dimensional Systems.  for annihilation-coagulation reactions A + A + products one finds 
y = 0.52-0.59 [I] and y = 0.47(3) [Z], and for the (pure) coagulation reaction A +  A -+ A, 
y 5 0.48 [3]. Although these reaction systems might appear to be quite different, in 
this work we  show that these and more general systems can he treated in a simple and 
unified way. In particular, a simple explanation for the same value of y in all annihilation- 
coagulation problems (that is, with only the irreversible reactions A + A  + 0 and A+A -+ A 
present) is obtained. 

For the theoretical description of these reactiondiffusion systems, a useful approach 
[4] consists of rewriting the master qua t ion  which describes the time evolution of the 
probability distribution function P((,3’); f )  as a Schrodinger equation 

~ , P ( I B I :  t )  = - H P ( I B J ;  t )  (2) 
in which the quantum Hamiltonian H is defined in terms of the transition rates w(,3 + y )  
between two configurations ( p )  and ( y )  by 

(VI  ff IB) = -w(B + v) (81 ff IB) = w(B + v) (3) 
YZB 

7 Presenr address: Labontoire de Physlque du Solide. Univenid Henri Poincar6 Nmcy I, BP 239, F.54506 
Vandoeuvre-Ik-Nmcy Cedex. France. 
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where H describes a stochastic process since the sums of all elements in each column add 
up to zero. This conservation of probability is equivalent to the relation 

(4 H = 0 (4 = (VI1 (4) 
B 

for the vector ($1. Then the well known theorems about the solutions of the master equation 
[5] can be translated into the Hamiltonian formulation at hand. In particular, the real 
parts of the eigenvalues of H are non-negative. Furthermore, starting from an initial 
probability distribution IPo) = xs P({B);  t = 0) I{B)) where each configuration (@) occurs 
with probability P((B} ;  f = 0). the solution to the master equation (2) is then formally given 
by the time-dependent probability distribution (state vector) IP) = E, P({,S]; t )  I[@]) = 
exp(-Ht)IPo). Time-dependent averages of an observable? F are given by the matrix 
element 

(5) 
The interest in this set-up of the problem in ID comes from the integrability of the 

quantum Hamiltonian H for large classes of reaction-diffusion processes [Hi]. Exactly 
known results such as the knowledge of the spectrum of H (obtained, e.g. from the Bethe 
ansatz) have so far led to a number of exact and explicit results for time-dependent averages 
and correlations. Here we show how these and other existing results (see, e.g. [9,10] 
for annihilation and coagulation processes) can be extended to considerably more general 
quantum Hamiltonians: 

(i) we investigate relations between stochastic systems whose quantum Hamiltonians 
H and H are related through a change of basis of the one-particle states, see [6-8,11,12] 

H“ = BHU-I U = @ B; (6) 

(F)(f) = (SI Fe-H‘IPo) . 

L 

;=I 

where Bi is acting only on the site i .  
(ii) We consider a given quantum (and, in general, non-stochastic) Hamiltonian with 

known properties and we look for stochastic processes which can be obtained from this 
Hamiltonian by a similarity transformation of the form (6). The time-dependent behaviour 
of these new stochastic systems can then be elucidated in terms of the original Hamiltonian. 

(7) 
with the transformed observable F” = F E i  and transformed initial distribution I&) = 
BlPO). 

We now give the general form of the single-site matrix B for transformations between 
two stochastic systems. Certainly, one-site state vectors of the system S described by the 
Hamiltonian H must have the form l p )  = (lip), with 0 < p < 1. Also, for the transformed 
state B Ip), probabilities must sum up to one, for all values of p. thus 

Under the’ similarity transformation U from (6)  averages transfonn as follows: 

(F)(t) = ($1 Fe-H’ [PO) = (SI F”e-Erlg) 

bit (1 - P) + b x p  + biz(l - p )  + b22p = 1 (8) 
where the b;j are the elements of B.  Comparing coefficients, we get for B the form 

Since obviously (31 B = ($1, it follows that (SI H” = 0 for the full system defined on L sites. 

t F is a suitably chosen projection opentor (see below). 
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The stochastic systems S = (H, p) under consideration are described by the quantum 
Hamiltonian H and a set of parameters p specifyingJhe initial conditions (see below). 
The relations between two stochastic systems S and S are caught by the following two 
definitions: 

between two stochastic systems S and ? is called a 
similariry transformation. if there exists a nor$ngular transformation I3 of the form (6) 
between the quantum Hamiltonians H and H such that all reaction-diffusion rates are 
positive in both systems. S and %e then called similar. 

(ii) The transformation S + S between two systems S and ? is called a stochastic 
similariry transfrmarion ( S q ,  if S and S are similar and furthermore if for all probability 
distributions IP) of S also IP) = B IP) is a probability distribution of S. 

Through similarities and sST a given system may be mapped into a simpler form. 
Examples will be given below. To illustrate the second definition, consider an uncorrelated 
initial state of the form 

(i) The transformation S + 

with 0 < p; < 1 for all sites i = 1, . . . , L.  This also specifies the initial condition which 
is going to be considered below, with pi = p for all sites i .  If 5 is obtained f z m  S by 
an SST, initial states of the form (10) are mapped onto transformed initial states IPo) of the 
same form and with 0 < 5. $1 for all sites. We stress that the notion of an SST between 
two stochastic systems S and S is considerably more restrictive than mere similarity, which 
does not also require that the transformed state vector is a probability distribution. We 
also remark that because of the locality of the change of basis the results obtained here are 
valid in an arbitrary number of space dimensions, although we shall present the argument 
explicitly only for d = 1. 

We now define precisely the models we shall study below. Consider a one-dimensional 
lattice, with L sites and periodic boundary conditions. Each lattice site can either be empty 
(denoted by 0) or occupied by a single particle (denoted by A). Particles can hop to an 
empty nearest-neighbour site. A single particle or a pair of particles on neighbouring sites 
can undergo a chemical reaction. The reactions we are going to consider are specified with 
their rates in table I. 

Table 1. Two-sites reaction-diffusion processes and their rater. 

Diffusion to the lek 
Diffusion to the right 
Pair annihilation 
Coagulation to the right 
Coagulation to the left 
Death 

Decoagulation to the lek 
Decoagulation to the right 
Birth 
Creation 

0 + A - A + 0  DL 
A + 0 + 0 + A  DR 
A + A - t 0 + 0  Zcr 
A + A - L ~ + A  ya 
A + A - r A + 0  yr 
A C B + ’ d + R  6 
O t A + L 3 + 0  8 
O + A + A + A  Br 
A + 0 + A + A  OR 
0 + 0 - + A + A  2” 
0 + 0 + 0 + A  U 

O f l l - t A i B  n 

Furthermore, we shall distinguish between unb,iased and biased reactions. For unbiased 
reactions, the rates with indices L and R are all equal and we~shall then drop the index 
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(e.g. DL = DR = D etc). For biased reactions, we define an anisotropy parameter q from 

(11) 
DL = D ( I +  V )  YL = y( l+  0) BL = 8(1+  V )  

DR = D(1- ?J) YR = Y (1 - 7) B R  = B(1 - V ) .  

For q = 0 we recover the unbiased case. 
We begin with unbiased systems, that is v = 0. We consider the following system, 

with diffusion, annihilation, coagulation and death reactions present (see table 1). In what 
follows, we take units of time such that D = 1. Then, following the standard procedure of 
[6] the Hamiltonian can be written in terms of two-site contributions H = xi Hi.i+l, where 

1 0  -6 -6 -2ar ) 

acts on sites i and i + 1 of the lattice. We define the k-point correlation function of the 
particle number operator nx,, i = 1,2, . . . , k as 

C ~ ( I X ) , G ~ ~ , Y , ~ ; P ) =  ( n ,  . . . n z t ) ~ ( t )  (13) 

where we explicitly indicate the dependence on the rates as well as on the initial conditions. 
The operator n, is a projector with eigenvalue 1 if site x is occupied and eigenvalue 0 
if it is vacant. Although H is non-Hennitian, 'it is known that there is a decomposition 
H = HxXz + HI into a Hermitian Hamiltonian HXXZ (which is the Hamiltonian of the 
anisotropic Heisenberg quantum spin model) and a non-Hemitian part HI such that the 
eigenvalues of H are exactly the eigenvalues of HXXZ [6]. That is so because the chemical 
reactions permitted here only destroy and never create particles. In one dimension, an 
interesting special case is given by the free-fennion condition 

a + y =  1 + 6 .  (14) 

In that case the Hermitian part HXXZ can be diagonalized exactly in terms of free fermions. 
If either just annihilation or coagulation are present, it is known that a closed system of 
equations of motion can be found [9]. Equation (14) means that diffusion and death together 
occur at the same rate as annihilation and coagulation together. If 6 6 y ,  we can rewrite the 
problem as an annihilation-coagulation problem of an unstable particle, where the effective 
coagulation rate is modified into yefi =-.y - 6, and 1/(26) is the lifetime of the unstable 
particlej. If we use the diffusion procks to determine the time scale, we can say that if 
two particles attempt to be on the same site at the same time, they uddergo a chemical 
reaction with probability one. The ratio ye~/ar  then gives the branching ratio between the 
two processes. 

At first sight, the condition (14) appears to be rather artificial. However, it is apparently 
realized to a good approximation in one of the experimental realizations of the model 
considered so far [3]. The carrier substance is N(CH3)4MnC13. The particles are excitons 
of the Mn2+ ion and move along the widely separated MnCls chains. A single exciton 
has a decay time of about 0.7 ms. The on-chain hopping rate is 10"-10'2 s-l. If two 
excitons arrive on the same Mn2+ ion, they undergo a coagulation reaction with a reaction 
time x l 0 0  fs [3]. Since the reaction time is much smaller than the diffusion time, we 
can conclude that the reaction probability is very close to one. This gives back (14), with 
01 = 6 = 0 for this example. 

t The special case y = 6, i.e. pair annihilation of unstable particles. is discussed in lhe appendix, 
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After these preparatoly remarks we return to the general case. Starting from h e  system 
S as defined through its Hamiltonian (12), we get the following simplified systems S through 
an SST. 

I. S > 20r + y .  Through an SST we get the system FI with 

and we find 

U. 6 = 20! + y .  In this case, the transformation becomes singular. However, the equations 
of motion for the particle number correlators C((x) )  decouple from each other [8]. For 
example, the particle density at time t is 

C O L  

c ~ ( x ,  t )  = C~l(y, o)I~-,+,L(~~) (17) 
m=-m 

where I,, is a modified Bessel function. 
111. 6 c  CY + y .  We find the transformed system & 

and we find 

W. S e CY + y .  In this interval, there is a second SST onto the system & with 

- h + y - 6 p  (20) 
E i = D  Z = C Y + Y - ~  v " = S  S = S  p = 2 0 r + 2 y - 2 S  

- 
and we find 

(7-1) 
are found from S through an SST, the latter is more 

useful for practical calculations. Using the results derived in the appendix, we can isolate 
the dependence on S completely. For translationally invariant initial distributions we have 
for the large-time behaviour in the free fermion case (see the appendix for more general 
cases) 

Although both.systems &, 

CL(x, t )  Y pee-? (22) 
C ~ ( X , X  + r , t )  ~ . r - ~ " e - ~ "  r 2 < t  

and we see explicitly that for 6 # 0 the initial particle density does enter into the large-time 
behaviour. 

This is different frocthe result found when the death reaction is absent (6 = 0). In that 
case only the SST onto SIU = remains. (The corresponding similarity transformations 
have been derived before [ I  1,121.) All correlations then depend non-trivially only on the 
effective annihilation rate = 01 t y .  The correlation function C on the right-hand 
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side of (21) is then the known density correlation function for diffusion annihilation, see 
[6,9, lo].  For example, with the initial state (10) with pi = p for all sites i we have for the 
mean particle concentration E ( t )  - dx C,(x, t )  in the free-fermion case for the process 
A + A + 5  

(23) 
In particular, we always get back y = 5 in (l) ,  in agreement with experiment [l-31. 
Furthermore, the data of Kroon et al [3] show that the long-time behaviour of E O )  is 
independent of the initial particle density p, in agreement with (23). 

So far, the transformations considered have mapped S back onto itself, up to changed 
values of its parameters. But it is sometimes possible to reduce more complex systems to 
the ones discussed here. For example, the system S with the parameters 

D = 1  6=2a+2y (24) 
and y # 0 gives through an SST the system s with (see table 1) 

D = f ( 3 + 2 c f + 2 y )  a=O F= f ( a + y )  8=2y" U = 4 y .  (25) - -  - - 
Since the system S contains particle creation as well as particle destruction terms, it no 
longer has a trivial (i.e. empty) steady state. This steady state can be found easily, since 
for a single-site state 

. ( l i p ) = (  ; - z X p ) .  1 Y 

-+- y P  
3 3c f+3y  

Since the steady state of S is just @ ( A ) ,  we find that the steady state of 5 has a mean 
particle density p = 3 .  The approach towards this steady state is exponential. 

Another example is found when a + y < S < 2a + y. Then S is similar to with 

D = i (8 -a  - y )  + 1 

7 = 6  = a  = $(2a + 2 y  - 6 )  

cf - = ;(S - cf - y )  - - (27) 
p =  I8 3 

and the one-site state changes into 

P 

2 6-2o r -y  -+  
3 3(S-cc-y) 
1 8 - 2 a - y  . ( l i p ) = (  - -  3 3 ( S - a - y )  

and we get a steady state particle density of p = f .  The approach towards this steady state 
is exponential. The transformation S + s is an SST if 6 > ;a + y .  Conversely, s + B is 
an SST if 6 < $a + y .  Other examples with S = 0 are given in [U].  

We now turn our attention to some systems with biased reaction-diffusion processes. 
We take diffusion, coagulation and annihilation into account. Thcrates are given in (11). 
Using the unbiased case q = 0 as a guide, we seek an SST S + S such that ~ " L . R  = 0. In 
fact, using b1 = 1 as before and choosing 62 in order to get y", = 0, we find 
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For q = 0, we recover the previous result. However, if we use the free-fermion condition 
a+y = I, then 7~ = O  and Z = 1. We then have 

C,((x), t ;  01, y = 1 - a;  q; p )  = ( I  - ;,>” C k ( C X 1 .  t ;  1,o; 7; + a b ) .  (30) 

Considering the mean particle density only, this relation was also observed in [13] for the 
special case of mapping the pure biased coagulation problem (a  = 0) onto the pure biased 
annihilation problem ( y  = 0). Generally one finds that for a homogeneous initial condition 
(10) with p ,  = p = constant, the correlation function C&), t ;  1.0; q; (1 + a)p/2) is 
independent of the bias q [lo]. For an inhomogeneous initial state with pxo = 1 and p, = 
for y # xg one finds for the average density in an infinite system for large times [lo] 

& rt2 

1 

(31) 
1 + - e-(x-x3-flr)~/2 , C I ( X , ~ )  = (n , ) ( t )  = - 1 

Finally, we illuseate the transformation (6) between a stochastic and a non-stochastic 
system. As an example, consider the Hamiltonian H = xi Hi.i+l 

A 0  0 

Hi,;+l = ( 0  0 A i l  -D A - 1  -,” -C?) 0 ’ (32) 

0 A - 2  

H can be solved in terms of free fermions. We want ,the trssformed Hamiltonian H” 
to describe a stochastic system, that is we require that (SI H = 0, see (4). Writing 
B = ( bll 

bzi = -611 A = 2 .  (33) 
We now take blz = b22. Let r = (b1l /b22)~ > 0. Then the positivity of the reaction rates 
in 

b12) ,  the solution to this condition is 
62, h2 

requires that r = D/a .  The Hamiltonian then reads 

D - 1  
- 1 + D  0 2 + 2 D  D - 1  O ’  I 2 - 2 0  - 1 - D  - I - D  - - 1 + D  2 + 2 D  0 H.. - , , > + I  - (34) 

1 0 -1-D -1-D 2 - 2 0 )  

The off-diagonal elements of H” are no_n-positive provided 0 c D < 1 and 0 c a .  Under 
these conditions E is non-singular and H is the quantum Hamiltonian of a stochastic system. 
We point out that this Hamiltonian is identical to the quantum Hamiltonian for the ID 
Glauber-king model [ 141 

at temperature T given by D = tanh (2J f k B T ) .  In this way we obtain a new relation 
between non-zero temperature Glauber dynamics and the XXZ chain in the free fermion 
case. On the other hand, for non-vanishing T the Glauber-king model can be transformed 
into an XY free fermion chain 1151. We shall retum to consequences of this observation 
and the reformulation of more general stochastic processes in terms of soluble free fermion 
systems elsewhere. 

In summary, we have shown how to relate different stochastic systems using similarity 
transformations. In several examples, this technique proves to be useful to extend the 
scope of integrable systems. The results are in agreement with the existing experiments 
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and include some previous observations of relations between different systems as special 
cases. Going beyond similarity transformations between stochastic systems, we have found 
a simple example how to reformulate a stochastic system in terms of a non-stochastic 
soluble free-fennion model in a novel way. The techniques developed here can be used for 
a systematic study and classification of stochastic interacting particle systems in terms of 
integrable quantum chains. 
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Appendix 

Here we study the annihilation process for unstable particles with an average lifetime y = 6. 
The equations of motion for the average density and density correlations read 

(AI) 
d -(4 = & + I )  + b - 1 )  - 2(1+ WnJ - 201 Uwx+d + h-d) dt 
d 

- (nxny)  = (nx+1nr) + (%-InJ) + (n,n,.+d + h n , - l )  - 4 0  +6)(nxny)  dt 
-& ((nxnx+lny) + (nx-vwx) + (nxnyns+l) + (~x+lny)) 

(if I Y  - 4  2 2) 

-(n,n,+i) = (n,-ln,+i) + (nxnx+z) - 2(1 +or + 2 W w X + d  dt 

642) 
d 

-k ((n,-ln,n,+l) + (n,n,+In,+z)) (-43) 
and similar expressions for higher-order correlators [SI. For a k-point correlator there is 
always a coupling to (k + 1)-point correlation functions proportional to the annihilation 
rate 01. First we show that the amplitude of a k-point density correlation function 
Ck((x) :  t )  = (nx, ... ns) decays for large times t at least with a factor proportional to 
exp (-2kSt). 

To see this, we recall that the spectrum of the quantum Hamiltonian H is exactly the 
same as of the XXZ quantum chain [6]. For the calculation of the eigenvalues, it is thus 
sufficient to consider the sectors with fixed number of particles k separately. In the k-particle 
sector, the eigenvalues of H are 

N 
Eli) = k26 + c 2 ( 1  - cosqi) 2 k26 (A4) 

and the values of the qi are determined from the Bethe ansatz equations. On the other hand, 
the k-point correlators C, can only take non-zero values when defined on states which 
contain at least k particles. Furthermore, C, depends through the equations of motion 
directly only on Ck and Ck+l and in particular it is independent of CO, Cl,. . . , Ck-1. Thus, 
for large times t we must have 

ck({x); t )  -emu with A 2 k26 645) 

;=I 

because of the inequality (A4) for the eigenvalues of H in the k-particle sectort. 

t Writing CA ((x}; r) = C U s i B ,  ((XI; t). one can further show with the Bethe ansatz that generically BI ( I )  -P O(I) 
and Bka2(r) + 0 as r + m. 
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Now we define the explicitly time-dependent quantity i , ( t )  = exp(ZSf)n,. 
According to the considerations of the previous paragraph k-point correlation 
functions of this quantity are bounded from above by their initial values 
(& . . . i x k ) ( t  = 0) = (nx, . . .ns) ( t  = 0)  6 1. Rewriting equations (AlHA3) and the cor- 
responding equations for k-point correlators in terms of averages for i, reproduces equa- 
tions of the same form, but with effective time-dependent couplings 6 ( f )  = OL exp (-2St) 
to (k + 1)-point correlators and with 6 = 0: 

(A61 -(iz) = + (&-I) - ~(i,)  - 2 0 ~ e - ~ ' ( ( i ~ i ~ + I )  + (ix-,ix)) dt 

-(iziy) = ( i r + l i , )  + ( i x - l i y )  + ( i x i , + l )  + ( i x i y - l )  -4( ixis)  
dt 

~d 

d 

-2ore- 261 ( ( n x n x + l i J )  - - + ( i z - l i x i J )  + (i&iy+l) + (i&liiy)) 
(if I Y  -X I  2 2) L47) 

d 
- ( i x i x + l )  = ( i x - l i x + l )  + ( i l i X + ' )  - 2(1 + O L ) ( i x i x + d  d i  

-2ore-?' ( ( i x - I i x t i x + l )  + ( i x i x + & + z ) )  . (A8) 
Since ( E x , .  . . i s ) ( r )  < 1 for all times t and since for long times O L ~ - ' ~ '  can be neglected 
these equations effectively decouple and reduce to closed linear differential-difference 
equations for k-point correlators which can be solved with the bet he^ ansatz [SI. 

The equation for the onepoint function reduces to a lattice diffusion equation which is 
solved by modified Bessel functions. Assuming a translationally invariant initial state with 
(n,(t = 0)) = (E,(? = 0)) = po one finds for the average particle density at time t 

(n,(t))  zz poe-2sr . (A91 
This quantity depends on the initial density which is in contrast to the diffusion limited 
annihilation of stable particles where the density decays algebraically (for long times) and 
with an amplitude independent of the initial density. 

Defining c ( r ,  t )  = (i,i,+,(t)) and using (A6)-(A8) one finds for the two-point function 
with translationally invariant initial conditions the equations 

This gives for the two-point density correlation function C(r,  f )  = (n,n,+,(t)) in an infinite 
system 

where I, is the modified Bessel function, a, are constants defined by the initial distribution 
and b, = puy - (1 - p') p2-1-kuk with p = 1 - i. At first sight, we should expect 
for large times that C(r ,  t) - t-'/'exp(-4St). For the fiee-fermion case or = 1, however, 
a different result is found. Since by = -av-] we get 

For rz  << t this correlator decays as C - t -3 /2  exp (-4St) whereas for r z  - t one has 
C N t-"'exp (-46t). The same effect is also seen for 1y = 2. 



6344 M Henkel et a1 

References 

[I1 Pras3d J and Kopelman R 1989 Chem Phys. ~ I I .  157 535 
[2] Kopelman R, Li C S and Shi Z Y  1990 3. Luminescence 45 40 
[31 Kroon R, Fleurent H and Sprik R 1993 Phys. Rev. E 47 2462 
[41 Kadanoff L P and Swift J 1968 Phyr. Rev. 165 310 

Doi M 1976 1. Phys. A: Math. Gen 9 1465. 1479 
Crassberger P and SCheUnert M 1980 Fortschr. Pkys, 28 547 

[51 Hyver C 1972 J. Theor. Biol. 36 133 
Keizer J 1972 1. Stat. Phys. 6 67 
Schnakenberg J 1976 Rev. Mod Phys. 48 571 

[61 Alcaraz F C. Droz M, Hedcel M and Rittenberg V 1994 Ann. Phys., NY 230 250 
[7] Peschel 1. Rinenberg V and Schultze U 1995 Nucl. Phys. B 430 633 

[SI Schiie G M 1995 J.  Stm. Phys. 79 243 
[91 Lushnikov A A 1986 Sow. Phys.-JETP 64 811; 1987 Phys. Len. l2OA 135 

Dahmen S R 1995 1. Phys. A: Math. Gen 28 905 

ben-Avraham D, Bunchka M A and Doering C R 1990 J. Stat Phys. 60 695 
Spouge J L 1988 Phys. Rev. Letc 60 871 
Amx I G and Family F 1990 Phys. Rev. A 41 3258 
Family F and Amar I C 1991 J .  Slot. Phys. 65 1235 
Grynberg M D and Stinchcombe R B 1995 Phys. Rev. k i t .  74 1242 

[lo] SchUtz G M 1995 1. Phys. A: Math. Gen. 28 3405; Ogordordpreprint OUTP-95-13s 
I111 Krebs K. Pfannmiiller M P. Wehefritz B and Hinrichsen H 1995 J. Stat. Phys. 78 1429 
I121 Simon H 1995 Bonn preprint BONN TH-95-07 
(131 Privman V, Cadilhe A M R and Glasser M L 1995 Preprint 
I141 Glauber R I  1963 J. Moth. Phys. 4 294 
1151 SiggioE 1977 PhyJ. Rev. B 16 2319 


