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Equivalences between stochastic sjfstems

Malte Henkelt, Enzo Orlandini and Gunter M Schiitz

Theoretical Physics, Department of Physics, University of Oxford, 1 Keble Road, QOxford
0X1 3NP, UK

Received 19 April 1995

Abstract. Time-dependent correlation functions of (unstable) particles undergoing biased or
unbiased diffusion, coagulation and annihilation are studied. This is achieved by similarity
transformations between different stochastic models and between stochastic and soluble non-
stochastic models. For special cases we obtain exact resvlts which are in good agreement with
experiments on one-dimensional annihilation—coagulation processes.

The physics of interacting particles out of thermodynamic equilibrium has been a subject
of much recent interest. While in larger spatial dimensions, conventional rate equation
approaches are sufficient, systems constrained to be effectively one-dimensional display
nove] and interesting fluctuation effects. For example, for particles A diffusing on a lattice
and undergoing a binary reaction process A 4+ A — products one expects, for large times ¢,
an algebraic fall-off of the mean particle concentration

ey ~ 17V, (D

In ID systems, one finds y = % as opposed 0 y = I, obtained from a (mean-field)
rate equation. The exponent y has also been measured experimentally in effectively one-
dimensional systems. For annihilation—oagulation reactions A 4+ A — products one finds
y = 0.52-0.59 [1] and y = 0.47(3) {2], and for the (pure) coagulation reaction A+ A — A,
y =~ 0.48 [3]. Although these reaction systems might appear to be quite different, in
this work we show that these and more general systems can be treated in a simple and
unified way. In particular, a simple explanation for the same value of y in all annihilation—
coagulation problems (that is, with only the ireversible reactions A+A4 — @and A+A4 — A
present) is obtained.

For the theoretical description of these reaction—diffusion systems, a useful approach
[4] consists of rewriting the master equation which describes the time evolution of the
probability distribution function P({8}; t) as a Schridinger equation

&PUBL N =—HP({L}L1) @

in which the guantum Hamiltonian A is defined in terms of the transition rates w(f — ¥)
between two configurations {8} and {y} by

VIHIf =—wB—>y)  (BIHIB =) w@—>v) 3)
' Y#8
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where H describes a stochastic process since the sums of all elements in each column add
up to zero. This conservation of probability is equivalent to the relation

(sIH=0  (s|=>_ (B} €
8

for the vector (s|. Then the well known theorems about the solutions of the master equation
{5] can be translated into the Hamiltonian formulation at hand. In particular, the real
parts of the eigenvalues of H are non-negative. Furthermore, starting from an initial
probability distribution | Py} = Zﬁ P({{B}; t = 0 |{B]) where each configuration {#} occurs
with probability P{{8}; ¢ = 0), the solutton to the master equation (2) is then formally given
by the time-dependent probability distribution (state vector) |P} = Zﬁ PUBE DB =
exp (—H )} | P). Time-dependent averages of an cbservable} F are given by the matrix
element

(F)(t) = {s| Fe™#" B} . (5)

The interest in this set-up of the problem in ID comes from the integrability of the
guantum Hamiitonian H for large classes of reaction—diffusion processes [6-8]. Exactly
known results such as the knowledge of the specttum of A (obtained, e.g. from the Bethe
ansatz) have so far led to a number of exact and explicit results for time-dependent averages
and correlations. Here we show how these and other existing results (see, e.g. [9,10]
for annihilation and coagulation processes) can be extended to considerably more general
quantum Hamiltonians:

(i) We investigate relations between stochastic systems whose quantum Hamiltonians
H and H are related through a change of basis of the one-particle states, see {6-8,11,12]

L
g =BHB™ B=(X) B ©)
i=1

where B; is acting only on the site {.

(if) We consider a given quantum (and, in general, non-stochastic) Hamiltonian with
known properties and we look for stochastic processes which can be obtained from this
Hamiltonian by a similarity transformation of the form (6). The time-dependent behaviour
of these new stochastic systems can then be elucidated in terms of the original Hamiltonian.

Under the simitarity transformation B from (6} averages transform as follows:

(F)@) = {s| Fe~#" | Po) = (s Fe~ ™| By) 7)

with the transformed observable F = FB~! and transformed initial distribution [Py} =
B|Po).

We now give the general form of the single-site matrix B for transformations between
two stochastic systems. Certainly, one-site state vectors of the system § described by the
Hamiltonian H must have the form |p) = (J;p ), with 0 € p < 1. Also, for the transformed
state B |p), probabilities must sum up to one, for all values of g, thus

bu(l = p)+bnp+ b2l —p)+bnp =1 &)
where the b;; are the elements of B. Comparing coefficients, we get for B the form
_ by 1—b
B_(l—b; by ) ©)

Since obviously {s] B = {s|, it follows that {s| H =0 for the full system defined on L sites.

1 F is a suitably chosen projection operator (see below).
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The stochastic systems § = (H, p) under consideration are described by the guantum
Hamiltonian H and a set of parameters p specifying_the initial conditions (see below).
The relations between two stochastic systems S and S are caught by the following two
definitions:

(i) The transformauon § — S between two stochastic systems S and 5 is called a
similarity transformation, if there exists a non-singular transformation B of the form (6)
between the quantum Hamiltonians H and H such that all reaction—diffusion rates are
positive in both systems. § and s are then called similar.

(ii) The transformation § — s between two systems S and S is called a stochastic
similarity transformation (SST), if S and S are similar and furthermore if for all probability
distributions |P) of § also [P} B|P) is a probability distribution of 5.

Through similarities and SST a given system may be mapped into a simpler form.
Examples will be given below. To illustrate the second definition, consider an uncorrelated
initial state of the form -

[Po) = é ( ) (10)

with 0 < p; < 1 for all sites i = 1,..., L. This also specifies the initial condition which
is going to be considered below, with p; = p for all sites {, If § is obtained from § by
an $8T, initial states of the form (10) are mapped onto transformed initial states IPo) of the
same form and with 0 < 5; £ 1 for all sites. We stress that the notion of an SST between
two stochastic systems § and § is considerably more restrictive than mere similarity, which
does not also require that the transformed state vector is a probability distribution. We
also remark that because of the locality of the change of basis the results obtained here are
valid in an arbitrary number of space dimensions, although we shall present the argument
explicitly only ford = 1.

We now define precisely the models we shall study below. Consider a one-dimensional
lattice, with L sites and periodic boundary conditions. Each lattice site can either be empty
(denoted by @) or occupied by a single particle (denoted by A). Particles can hop to an
empty nearest-neighbour site. A single particle or a pair of particles on neighbouring sites
can undergo a chemical reaction. The reactions we are going to consider are specified with
their rates in table 1.

Table 1, Two-sites reaction-diffusion processes and their rates,

Diffysion to the left G+A—>A+0 Dy
Diffusion to the right A+0—=0+4A Dg
Pair annihilation A+A-B+0 2o
Coagulation to the right A+ A—~B4+A4 yi
Coagulation to the left A+ A—~A+B y
Death A+G—>0+06 3§

Bra—-04+08 &
Decoagulation 1o the left B+A-—>A+4 B
Decoagulation to the fight A+8—> A4+ A S
Birth B+ A+ A Zu
Creation F+B—-04+A o

G+ A+8 ¢

Furthermore, we shall distinguish between unbiased and biased reactions. For unbiased
reactions, the rates with indices L and R are all equal and we shall then drop the index
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{e.g. Dy = Dg = D etc). For biased reactions, we define an anisotropy parameter # from

Dy =D(0+m ve=y(+m Be=80+n
Dr=D{(1—-1n) yr=y{1—1n) Br=B(l—mn).

For i = 0 we recover the unbiased case.

We begin with unbiased systems, that is 7 = 0. We consider the following system,
with diffusion, annihilation, coagulation and death reactions present (see table 1). In what
follows, we take units of time such that D = 1, Then, following the standard procedure of
[6] the Hamiltonian can be written in terms of two-site contributions H = ), H; ;.+;, where

(1)

0 -5 -3 -2
o lotws a1 -y
HI.!+1 = 0 -1 1+6 —y (12)

0 0 0 2a+y)

acts on sites i and 7 + 1 of the lattice. We define the k-point correlation function of the
patticle number operator ny,, i = 1,2,...,k as

Crllx} 0, v, 8 p) = (R ... g d i (2) (13)

where we explicitly indicate the dependence on the rates as well as on the initial conditions.
The operator n, is a projector with eigenvalue 1 if site x is occupied and eigenvalue O
if it is vacant. Although H is non-Hermitian, it is known that there is a decomposition
H = Hyyz + H into a Hermitian Hamiltonian Hyyz (which is the Hamiltonian of the
anisotropic Heisenberg quantum spin model) and a non-Hermitian part H; such that the
eigenvalues of H are exactly the eigenvalues of Hyyz [6]. That is so because the chemical
reactions permitted here only destroy and never create particles. In one dimension, an
interesting special case is given by the free-fermion condition

at+y=1+4, (14)

In that case the Hermitian part Hyyz can be diagonalized exactly in terms of free fermions.
If either just annihilation or coagulation are present, it is known that a closed system of
equations of motion can be found [9]. Equation (14) means that diffusion and death together
occur at the same rate as annihilation and coagulation together. If § < y, we can rewrite the
problem as an annihilation—coagulation problem of an unstable particle, where the effective
coagulation rate is modified into y¢ = ¥ — &8, and 1/(24) is the lifetime of the unstable
particlej. If we use the diffusion process to determine the time scale, we can say that if
two particles attempt to be on the same site at the same time, they ufdergo a chemical
reaction with probability one. The ratio yug/or then gives the branching ratio between the
two processes.

At first sight, the condition (14) appears to be rather artificial. However, it is apparently
realized to a good approximation in one of the experimental realizations of the model
considered so far [3]. The carrier substance is N(CHza)sMnCls. The particles are excitons
of the Mn** ion and move along the widely separated MnCls chains. A single exciton
has a decay time of about 0.7 ms. The on-chain hopping rate is 10''-10'2 s=!, If two
excitons arrive on the same Mn”* ion, they undergo a coagulation reaction with a reaction
time =~ 100 fs [3]. Since the reaction time is much smaller than the diffusion time, we
can conclude that the reaction probability is very close to one. This gives back (14), with
¢ = & = 0 for this example. '

t The special case y = §, i.e. pair annihilation of unstable particles, is discussed in the appendix.
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After these preparatory remarks we return to the general case. Starting from the system
S as definad through its Hamiltonian (12), we get the following simplified systems § throngh
an SST.

I. &> 2¢ 4+ y. Through an SST we Zet the system 5; with
’ §—2a—y

~=-"._' ~= ~= 3‘: =
D=2D a=0 y=a+y 8 T

(15}

™7

and we find
i—o

8 — 2a —
Glix}rioy,8,0) = (ﬁ-———) Ck({x} 50,2 +y.8; ?5—_:;0)- (16)

. § = 2a -+ y. In this case, the transformation becomes singular. However, the equations
of motion for the particle number correlators C({x}} decouple from each other [8]. For
example, the particle density at time ¢ is

Ci(x, 1) = 729" % ch G, Olzysme () (17

m=—co y=]

where [, is a modified Bessel function. -
Il § < 20 + . We find the transformed system Sy

D=D = =0 §=38 = —— 18
=aty ¥ P 2aray—s? s)
and we find
20+ 2y — 8\ 2004y —8 )
C ,f; ] ,8; =\T—"—"—""T , £ + ,08 ———
k({x}, 150, 85 0) (2a+y—a) ({x} o+y Sty —3
(19)
IV. § <« + . In this interval, there is a second SST onto the system §w with
~ ~ ~ ~ ~ 204y =8
D @ e+y—4& v ) P 2a+2y_28p (20}
and we find
200+ 2y =248 24y —8
C oy, p)=| ————— | C £ 8,8,8, ————
kxh e, v, 85 0) (2a+y 3 ) k({x} @ty - 2(o:+y—3)p)
(21)

Although both.systems E}H, E'N are found from § through an SST, the latter is more
useful for practical calculations. Using the results derived in the appendix, we can isolate
the dependence on § completely. For translationally invariant initial distributions we have
for the large-time behaviour in the free fermion case (see the appendix for more general
cases)

Cilx, 1) o Foe 2 ' _ (22)
Calx,x +r, 1) = ™32 g4 rrgt

and we see explicitly that for § # 0 the initial particle density does enter into the large-time
behaviour,

This is different from the result found when the death reaction is absent (§ = 0). In that
case only the S5T onto Syy = Sv remains. (The corresponding similarity transformations
have been derived before [11,12].) All correlations then depend non-trivially only on the
effective annihilation rate wer = o 4+ . The correlation function C on the right-hand
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side of (21) is then the known density correlation function for diffusion annihilation, see
[6,9, 10]. For example, with the initial state (10) with p; = p for all sites i we have for the
mean particle concentration £(t} ~ [ dx Ci(x,?} in the free-fermion case for the process
A+A—@

() = pe~iPt [10(413:) +2(1=p) Zu —2p)! Mwn] ~ B Dy V(1L 4+ 0@,
k=1

(23)

In particular, we always get back y = % in (1), in agreement with experiment [1-31.
Furthermore, the data of Kroon et af [3] show that the long-time behaviour of &(¢) is
independent of the initial particle density p, in agreement with (23).

So far, the transformations considered have mapped S back onto itself, up to changed
values of its parameters. But it is sometimes possible to reduce more complex systems to
the ones discussed here. For example, the system § with the parameters

D=1 §=20+2y (24)
and y # 0 gives through an $ST the system 5 with (see table 1)
D=1@3+2a+2y) F=0 F=i@+p §=27 T=47. (25

Since the system S contains particle creation as well as particle destruction terms, it no
longer has a trivial (i.e. empty) steady state. This steady state can be found easily, since
for a single-site state

1_v
(7). ] m
3 + 30 + 3]’p
Since the steady state of S is just ®(0) we find that the steady state of S has a mean
particle density § = 3 The approach towards this steady state is exponential,

Another exa.mpIe is found when o + ¥ < 8 < 2z + . Then S is similar to S with
D=3¢6-oc-n+l F=3¢~a-y)

(27)
y=5—0'—3(20£+2y—8) ;3——8
and the one-site state changes into
2 §—-2¢-—
1 3t36-ac y)p :
B ( —r ) - Y (28)
P 1 6 —2a—y
3 38—-u—y)
and we get a steady state particle density of p = — . The approach towards this steady state

is exponential. The transformation S— Sisan SS’I‘ if § > —oe + y. Conversely, § — Sis
an SSTif § < -a + y. Other examples with § = 0 are given in [12].

We now tum our attention to some systems with bigsed reaction—diffusion processes.
We take diffusion, coagulation and annihilation into account. The rates are gwen in (11).
Using the unbiased case 5 = 0 as a guide, we seek an S5T § — S such that 5 ver=0 In
fact, using &y = 1 as before and choosing &, in order to get ¥ = 0, we find

~ da+y—Dry_ -~ =
yL= w700 =) =7 (29}
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For n = 0, we recover the previous result. However, if we use the free-fermion condition
a+y =1, then y, =0 and & = 1. We then have

2
Celfxh oy =1—a;mp) = (I+ ) Ce({x}.1;1,0;m; 3(1 + a)p) (30)

Considering the mean particle density only, this relation was also observed in [13] for the
special case of mapping the pure biased coagulation problem (o == () onto the pure biased
annihilation problem (y = 0). Generally one finds that for a homogeneous initial condition
(10) with o, = p = constant, the correlation function C,({x},#; 1,0; m (1 + e)p/2) is
independent of the bias n [10]. For an ithomogeneous initial state with o, = 1 and p, = %
for ¥ # xo one finds for the average density in an infinite system for large times [10]

1 1 2 }
1) = 1) = ——r0 T a—{x—xo—mt)* /2 . 31
Cl(x ) (nx}() »\/ZE-I_JTrze ( )
Finally, we illustrate the transformation (6} between a stochastic and a non-stochastic
system. As an example, consider the Hamiltonian H = 3, Hj ;41

A 0 0 —2a
G A-1 =D 0
0 -D A-1 0
0 0 0 A—-2

Hipp1 = (32)

H can be solved in terms of free fermions. We want the transformed Hamiltonian H
to describe a stochastic system, that is we require that {(s]H = 0, see (4). Writing

B=( by BuY ihe solution to this condition is
by bn

by = ~by; A=2. L (33)

We now take byp = bys. Let T = (by1/bsy)* > 0. Then the positivity of the reaction rates
in A requires that I' = D/a. The Hamiltonian then reads

2-2D —-1-D —-1-D O
—1+D 242D 0 D-1_
-1+4D 0 242D D-1

0 -1-D -1-D 2-2D

Hijot = (34)

The off-diagonal elements of & are non-positive provided 0 < D < 1 and 0 < a. Under
these conditions B is non-singular and A is the quantum Hamiitonian of a stochastic system.
We point out that this Hamiltonian is identical to the guanturn Hamiltonian for the ID
Glauber-Ising modetl [14]
L
Hgr =3 (1—o7)(1 - 1D{ofo}, +of 10f)) (35)
i=]
at temperature T given by D = tanh (27/45T). In this way we obtain a new relation
between non-zero temperature Glauber dynamics and the XX Z chain in the free fermion
case. On the other hand, for ron-vanishing T the Glauber-Ising model can be transformed
into an XY free fermion chain [15). We shall return to consequences of this observation
and the reformulation of more general stochastic processes in terms of soluble free fermion
systems elsewhere.
In summary, we have shown how to relate different stochastic systems using similarity
transformations. In several examples, this technique proves to be useful to extend the
scope of integrable systems. The results are in agreement with the existing experiments
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and include some previous observations of relations between different systems as special
cases. Going beyond similarity transformations between stochastic systems, we have found
a simple example how to reformulate a stochastic system in terms of a non-stochastic
soluble free-fermion model in a novel way. The techniques developed here can be used for
a systematic study and classification of stochastic interacting particle systems in terms of
integrable quantum chains.
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Appendix

Here we study the annihilation process for unstable particles with an average lifetime y = 8.
The equations of motion for the average density and density comrelations read

d

a(nx) = (1) + (ny—1) — 201 + {n) — 200 ((Rattrr) + (Rxminx) (Al)

d

a‘;(nxny) = (nx+lny) + (nx—lny> + (nxn)'+1) -+ (nxn_‘.'—l> —~4(1+8) (nxﬂ}')

—20 ((nxnx+ln_\-) + {mx1rteny) + {nenynyg ) + (”xny—-ln)‘))
(ifly—x122) (A2)

d
E(nxnx+l} = (Ny_1xal) F {Axftpyz) — 201 + & + 28) {nynzyr)

=20 ((x—18eMes1) + {AxReq1Rzs2}) (A3)

and similar expressions for higher-order correlators [8]. For a k-point correlator there is
always a coupling to (k -+ 1)-point correlation functions proportional to the annjhilation
rate . First we show that the amplitude of a k-point density correlation functicn
Cel{x}i 1) = (ny, ...ny,) decays for large times ¢ at least with a factor proportional to
exp (—2k§t).

To see this, we recall that the spectrum of the quantum Hamiltonian & is exactly the
same as of the XX Z quantumn chain [6). For the calculation of the eigenvalues, it is thus
sufficient to consider the sectors with fixed number of particles & separately. In the k-particle
sector, the eigenvalues of H are

N
Ey =k25+> 2(1 —cosgs) > k28 (Ad)

=1
and the values of the ¢; are determined from the Bethe ansatz equations. On the other hand,
the k-point correlators Cp can only take non-zero values when defined on states which
contain at least & particles. Furthermore, C; depends through the equations of motion

directly only on Cy and Cy..; and in particular it is independent of Cy, C1, ..., Cp—y. Thus,
for large times ¢ we must have
Cel{x); ) ~e™™ with A 2 £23 (A5)

because of the inequality (A4) for the eigenvalues of H in the k-particle sectort.

t Writing Cr ({x}; 1) = &~ By ({x}; 1}, one can further show with the Bethe ansatz that generically B; (£) — O(1)
and Brypa{t) > Oast — co. -
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Now we define the explicitly time-dependent quantity #,(t) = exp (25¢)n,.
According to the considerations of the previous paragraph k-point correlation
functions of this quantity are bounded from above by their initial wvalues
{fig, . Az )t =0} = (ng ...n5 )¢ = 0) < 1. Rewriting equations {A1}-(A3) and the cor-
responding equations for k-point correlators in terms of averages for 7y, reproduces equa-
tions of the same form, but with effective time-dependent couplings &(#) = aexp( 258t}
to (k + 1)-point correlators and with § = 0:

d

Eg(ﬁx) = (ﬁx+1) + {Ax-1) — 2{ny) — 20 e ({(Refzq) + (Rxeifiy)) (A6)
d ... S . o - - - . .
a_t(ﬁxny) = (nx+1”y> + (nxu-lny) + {”xn)'-i-l} + (nxny-l) _4(’1.7:”)')
_23’3_2& ((Exﬁx-i-lﬁy) + {ﬁx—lﬁxﬁy} + (ﬁxﬁyﬁy-&-l) -+ (ﬁxﬁy—-lﬁ_y))
(fly —xt 2 2) (AT)
£ Gixiesr) = Gheoriesn) + (iefias) = 200+ ) Giciest)

—20 €™ ((flx—tfixfixt) + (ixfixsfizea)) - ~(AB)
Since {fiy, ...z )(t) < 1 for all times ¢ and since for long times & ¢~2 can be neglected
these equations effectively decouple and reduce to closed linear differential-difference
_equations for &-point correlators which can be solved with the Bethe ansatz [8].
The equation for the one-point function reduces to a lattice diffusion equation which is
solved by modified Bessel functions. Assuming a translationally invariant initial state with

(et =0)) = (71, (t = 0)) = pp one finds for the average particle density at time ¢
(n2(t)) = poe™ . (A9)

This quantity depends on the initial density which is in contrast to the diffusion limited
annihilation of stable particles where the density decays algebraically (for long times) and
with an amplitude independent of the initial density.

Defining C(r, 1) = (A fip4r (7)) and using (A6)><A8) one finds for the two-point function
with translationally invariant initial conditions the equations

e =2Cr+1.0+Cr —1.0 =260 32
dt (A10)

%éa, N=2C2. -1+, n).

This gives for the two-point density correlation function C(r, t) = {(rxn;+-(#)} in an infinite
system

&2
Clr,t) m &M N0 (48) 4 bylory1(4)] (AlD)
y=1
where I is the modified Bessel function, a, are constants defined by the initial distribution
and by = pay — (1 — u?) Zk y ¥ ay, with g = 1 ~ a. At first sight, we should expect
for large times that C(r, t) ~ t~1/2exp(—48t). For the free-fermion case o = 1, however,
a different result is found. Since by = —a,_; we get

=]
Clr, 1)~ g4 Za_\,[f,_}.(zu) ~ Loy (4D)]. ' (A12)
y=1
For r* < 1 this correlator decays as C ~ t~*%exp(—441) whereas for r> ~ ¢ one has
C ~ 112 gxp (—48t). The same effect is also seen for o = 2.
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